Hierarchically Structured Hole Transport Layers of Spiro-OMeTAD and Multiwalled Carbon Nanotubes for Perovskite Solar Cells.

نویسندگان

  • Jiyong Lee
  • Mini Mol Menamparambath
  • Jae-Yeol Hwang
  • Seunghyun Baik
چکیده

The low electrical conductivity of spiro-OMeTAD hole transport layers impedes further enhancements of the power conversion efficiency (PCE) of perovskite solar cells. We embedded multiwalled carbon nanotubes (MWNTs) in spiro-OMeTAD (spiro-OMeTAD/MWNTs) to increase carrier mobility and conductivity. However, direct electrical contact between CH3 NH3 PbI3 and the MWNTs created pathways for undesirable back-electron transfer, owing to the large work function of MWNTs, limiting enhancements of the PCE. A hierarchical structure of pure spiro-OMeTAD and spiro-OMeTAD/MWNTs was designed to block back-electron transfer and fully exploit the enhanced charge transport of spiro-OMeTAD/MWNTs. The enhanced fill factor, short-circuit current density, open-circuit voltage, and PCE (15.1 %) were achieved by using this hierarchical hole transport layer structure (MWNT concentration=2 wt %). The perovskite solar cells were fabricated by a low-temperature solution process, further decreasing their per-Watt cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering

We fabricated perovskite solar cells using a triple-layer of n-type doped, intrinsic, and p-type doped 2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) (n-i-p) as hole transport layer (HTL) by vacuum evaporation. The doping concentration for n-type doped spiro-OMeTAD was optimized to adjust the highest occupied molecular orbital of spiro-OMeTAD to match the v...

متن کامل

Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells

Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...

متن کامل

Shelf life stability comparison in air for solution processed pristine PDPP3T polymer and doped spiro-OMeTAD as hole transport layer for perovskite solar cell

This data in brief includes forward and reverse scanned current density-voltage (J-V) characteristics of perovskite solar cells with PDPP3T and spiro-OMeTAD as HTL, stability testing conditions of perovskite solar cell shelf life in air for both PDPP3T and spiro-OMeTAD as HTL as per the description in Ref. [1], and individual J-V performance parameters acquired with increasing time exposed in a...

متن کامل

Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells.

Organic-inorganic metal halide perovskite solar cells were fabricated by laminating films of a carbon nanotube (CNT) network onto a CH3NH3PbI3 substrate as a hole collector, bypassing the energy-consuming vacuum process of metal deposition. In the absence of an organic hole-transporting material and metal contact, CH3NH3PbI3 and CNTs formed a solar cell with an efficiency of up to 6.87%. The CH...

متن کامل

Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells.

2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD), the prevalent organic hole transport material used in solid-state dye-sensitized solar cells and perovskite-absorber solar cells, relies on an uncontrolled oxidative process to reach appreciable conductivity. This work presents the use of a dicationic salt of spiro-OMeTAD, named spiro(TFSI)2, as a facile means ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ChemSusChem

دوره 8 14  شماره 

صفحات  -

تاریخ انتشار 2015